Lexical Databases for Carrier

William J. Poser
University of Pennsylvania

[This is the revised and expanded text of the paper I had
prepared, but due to illness was unable to give, for the
workshop “New Methods for Creating, Exploring and Dis-
seminating Linguistic Field Data”, organized by Steven
Bird under the auspices of the Talkbank Project at the
University of Pennsylvania, on 6 January 2000 in Chicago,

Illinois.]

1. Introduction

Research on Carrier, a dialectally diverse Athabaskan language of the central interior
of British Columbia, has resulted in a fairly large amount of information stored on-
line. The material I have includes lexical databases for seven dialects containing
over 36,000 Carrier entries. Carrier is dialectally diverse, with differences not only
in details of pronounciation, e.g. Stuart Lake tet “basket” versus Lheidli T’enneh
tit, and in lexical items, e.g. Stuart Lake ? ztih “knife” versus Lheidli T’enneh
tes, but in morphophonemics, morphology, and syntax. The dialect differences are,
moreover, considered important by the communities. Although the dialects are
mutually comprehensible, people consider it important to record and pass on their
own dialect. There are therefore actually seven separate Carrier lexical databases,
for different dialects, varying considerably in size.

The databases in which this material is kept are used both for research and
to generate printed dictionaries. The database system is home-brew, developed
incrementally over a decade. A similar system, though different in detail, underlies
the Montana Salish (Flathead) dictionary (Thomason 1994)! and the dictionaries

1 The database files are in a similar format, and similar software is used to generate TEX files
from the database. These TEX files are then further processed using TEX macros and format
files written by Richmond Thomason. The database itself is maintained by the linguists, Sarah
Thomason and Lucy Thomason, using Epsilon, a programmable text editor similar to Emacs
that runs under DOS. (Epsilon is a product of Lugaru Software. http://www.lugaru.com.)
When a printed dictionary is to be generated, the database files are transferred to a UNIX
system and the software run there.

-2 -

of Oapan and Ameyaltepec Nahuatl (Amith 2002ab).? The purpose of this paper is
to describe this system and explore its virtues and vices.

2. The Structure and Content of the Database

The database files are all pure ASCII text files. Records are delimited by extra
newlines. Records are divided into fields by the field delimiter “%”. Each field
consists of a tag, which identifies the field, and the contents of the field, separated
from the tag by a colon.?

A typical record is displayed in (1):
(1) A Typical Record

%P:tsa

%G :beaver

%IH:beaver

%C:N

%SN:Castor canadensis
%SF:animals-water

%S :JOPA/BRBI/STJA/EDFR/VESE/JEKO/MAGO
%UID:000044

%MD:2001/04/18

The first field, with the “P” tag for “pronounciation” is the Carrier form. The “G”
field is the gloss and the “IH” field, in this case identical, is the “inverse header”,
used as the headword when going from English to Carrier. The “C” field contains
the syntactic category, in this case “noun”. The “SN” field contains the scientific
name. The “SF” field contains a specification of the semantic field. This is used in
generating topical indices; it is also useful when extracting words of particular types,
such as kinship terms or biological terms. The “S” field identifies the sources of the
data; entries are separated by slashes. In this case, the sources are all individual
speakers, identified by abbreviations, but written sources may also be referred to.
The last two fields are used for bookkeeping. The “UID” field contains an integer
that uniquely identifies the record. This is used for integrity checks and for cross

2 These dictionaries are generated from a single database, in SIL Shoebox format, edited using
Microsoft Word under Windows. The database is copied to a GNU/Linux system for processing
into a printed dictionary.

This format is isomorphic to the widely used Summer Institute of Linguistics Shoebox format,
in which the field delimiter is the backslash (\) and tags are separated from field contents by
spaces. The reason for preferring the percent sign to backslash is that backslash has special
meaning to numerous UNIX programs and requires quoting and other special treatment. The
percent sign is much less trouble to deal with. I prefer the colon to space for two reasons. First,
when fields are parsed during processing, since many fields will contain spaces, extra work will
be done breaking the field into unnecessary pieces. More important than this rather minor
efficiency consideration is the fact that what appears visually to be a space may in fact be a
space, a tab, or another invisible character, while a colon is unambiguous.

. —

referencing. Finally, the “MD?” field contains the date on which the record was last
modified.

Records for verbs tend to be more complex. In (2) we see most of the same fields
as in (1), along with a number of new fields. The “VF” field indicates that this form
is Imperfective Affirmative. The “ASP” field indicates that this is a customary
aspect form. The “X” field gives the verb stem as gok. The “VA” field gives the
valence prefix as [. The “STEMLISTED” field is used for book-keeping; it indicates
that the stem of this form has been identified and that this form is listed in the
entry for the stem as one of the forms containing it.

(2) A Typical Verb Record

%P:tanalgok

%G:he walks on all limbs back into the water
%IH:walks on all limbs back into the water, he
%VF:IA

%ASP: customary

%C:V

%X :gok

%VA:1

%S:STJA

%STEMLISTED:Y

%ES:000148

%UID:001377

%MD:1998/12/09

The “ES” field contains a pointer to an example sentence, which is stored in another
file. Here is the entry for that example sentence:

(3) A Typical Example Sentence Record

%E:Dzen totsuk duni tanalgok.

%T:Every day the moose goes into the water.
%S :MAGO/STJA

%SID:000148

Numerous other fields are available. These include: grammatical information
about verb forms, including tense/mode/negation, aspect, noun classification, stem,
and valence prefix, lattitude, longitude, and map sheet (for places), pointers to im-
ages along with captions and picture credits, queries of several different types, re-
marks, indications of stylistic level, indications that the record contains information
that is private or questionable and should therefore not be printed, grammatical
notes, cultural notes, extended discussions of meanings, possessed forms of nouns,
etymologies, and notes on phonetic detail. All in all, more than sixty distinct fields
are in use.

So far we have only seen a need for two components to the databse: the file
containing the example sentences and their translations, and the main file containing

— 4 —

the records for individual forms like those shown above. There are two additional
components to each database, a stem list and a root list, whose presence is motivated
by the nature of the Carrier verb.

Carrier verbs consist of a stem, approximately the last syllable, and a set of
prefixes. In general, the stem carries the main meaning of the verb. In (4) we have
forms representing the tense/mode/negation paradigm of the verb “to go around
in a boat”. For each form, the last syllable, which is the stem, is shown separated
from the remainder, which consists of prefixes. In this case the prefixes convery
information about the subject, tense/mode, and negation, except for the initial /n/,
which denotes motion in a loop. We see that the stem varies considerably in form
with tense, mode, and negation.

(4) Stems of “I go around in a boat” (Stuart Lake dialect)

TMA /Neg Prefixes Stem
Imperfective Affirmative nas ke
Imperfective Negative natazas koh
Perfective Affirmative nasas ki
Perfective Negative natas kel
Future Affirmative natis ket
Future Negative nattazis kel
Optative Affirmative nos ke?
Optative Negative nalazus ke?

These various stems are all associated with an abstract root, in this case ke, meaning
“g0 by boat”, from which they are considered to be derived. Although there is a
pattern to the changes in stems, it is complex if not irregular, and so someone
learning the language must to a considerable extent simply memorize the stem set
for each verb.

The database therefore contains, in addition to the individual verb forms, a table
of verb stems and a table of verb roots. Each verb stem record contains pointers
to all of the actual verb forms in which it has been found as well as to the root
with which it is associated. At the level of individual forms, we may represent this
relationship as in (5). For example, the root kes “go by boat” has an Imperfective
Affirmative stem /ke/ which is attested in three verb forms.

-5

(5) Relationships of Verbs in a Carrier Dictionary

Verbs
Stem List | ...
..... naske
Root List ke (IA)) nats’ake
..... ket (FA) ninke
ke (boat) kel (FN) s natisket
ket; (buy) kel (PN) \ naltaziskel
keto (slip) kaih (Cust) \ nahikel
..... ket (PA) \ nats’akih
ket (OA) \ osket
..... tolket

The same relationship is ilustrated in (6) now at the level of the components of the
database. This diagram shows that the collection of forms contains pointers, in the
form of S(entenc)e IDs, to example sentences. The stem list contains pointers, in
the form of U(nique) IDs, to individual verb forms, and it also contains pointers, in
the form of R(oot) IDs, to verb roots.

(6) The Relational Structure of a Carrier Database

SID

RID

3. Modifying the Database

Since the database consists of ordinary text files, it can be modified by any text
editor. In practice, this is almost always Emacs (Stallman 1984), an interpreter
for a dialect of Lisp with special primitives for text editing. Since Emacs really is
a programming language interpreter, it is fully programmable. It is also possible
to bind any function to a combination of keystrokes. Functions written in Emacs
Lisp facilitate working with the database by providing such capabilities as insertion
of templates for new records of particular types with certain information already
filled in, a variety of specialized searches, and shortcuts for modification of selected
properties of the current record. For example, typing “Control-x t” updates the
time stamp in the modification time field of the current record.

-6 —

Another useful facility of Emacs is its ability recursively to split the screen
both vertically and horizontally, allowing for the simultaneous display of multiple
windows. In (7) we have a screen shot of Emacs in use editing a database. There are
three Emacs-internal windows open. The lower left window displays a portion of the
verb database.* The lower right window displays the portion of the stem database
containing the entry for the stem of the verb in the lower left window. The top
window is open to the sentence database and displays an example sentence associated
with the verb in the lower left window. This configuration would be useful in adding
verbs to the database. If the new verb form comes with an example sentence, the
example sentence would simultaneously be added to the sentence database and the
sentence ID entered in the verb form’s record. If the stem of the verb form can be
identified, the verb form’s ID can be added to the record for the stem, if it is already
in the database. If not, the new stem can be added.

(7) EMACS with Three Windows Open

Seath Mule - Help

ERTT 00054
™ E+T="uyi ka'ne=_zun,
A2l nesd food.
255 T IR/ JOPRAVESE
EEIT :000eE5
FErludi rtes_d zelh.
AT3l am 201ng to warm up the tes,
| | £525TTR
_ —i-- Eentencemisth o PZEECANIEGZE (Text)—Lidi5-FlE
ETHzuwant, 1fnesd, [LIOS7002307F
eI R0 19990403
FAES 1wk
#LaN eIy =il
FH3_zun LEthot
bAR S ETHa N
FSTEMLISTED:Y LASFIHC
E5:STTARAIOPRAVESE HROOT: _zul
EES 002 MO00EEL O0EEY ARIDEL
FUTT ;004084 L05002305
D2 200103, 04 AH0:1599/ 08403
HSTEM:_zun
EPrka’ nus_zun EErtkink
¥G6s] wank, nesd ATHz LR
fTH3uant, I/nesd, I ZHSPINC
IR ROOT: _zun
ALY ZREID:L
i _zun A5 Q00742 00NEGSEODCER A/ D0 ARL A1 5L
Al Q0L L5200 153002715 00ETa8 /04085,
ZSTEHLISTED: ¥ (04054, 0042500045
L5 TIRSJOPAAESE AH0: 2001 AUEA04
FES000z25
SULT 004085 ASTEM: _zim
FHO2 20010304 Lhrthink
ATHiFR
|m={EASF on
—3— Werbs, ldh 2R 0B fTesti—l408 =—=5— Stemidsb ldb 230 002H [Tektl--L1003

4 In some cases it has proved to be convenient to keep verbs and non-verbs in separate files. For
simplicity’s sake, this is not reflected in our discussion of the organization of the database.

-7 -

Emacs is normally not invoked directly. Instead, a database is edited by executing
a shell script, which in turn invokes Emacs. The shell script backs up the database
before invoking Emacs and computes certain information used by Emacs. At the end
of a session, when Emacs returns, the shell script performs some integrity checks,
makes a record of the differences between the previous version of the database and
the current one, and performs some clean up.

4. Printed Dictionaries

A variety of printed dictionaries are generated from the databases. From time to
time specialized dictionaries, such as lists of biological terms, have been printed, but
most of the time what is desired is a comprehensive dictionary. A few sections are

fixed, that is, consist of information not generated automatically from the database:
(8) Fixed Sections of Printed Dictionaries

Explanation of the Writing System
Grammatical Information

Alphabetical Order

Abbreviations for Grammatical Categories
Appendices (Numbers, Months, Days)
References

The appendices on numbers, months, and days are provided because language teach-
ers and parents of small children like them.? The inclusion of the appendix on
numbers also provides the opportunity to explain the rules for generation of num-
bers from their basic components as well as the classificatory system, according to
which numbers and some quantifiers take different forms depending on which of five
categories the thing counted belongs to.

The bulk of the material, however, is derived from the database.

5 A common belief of both parents and language teachers is that the language material appro-
priate for young children is the same as what they concentrate on in English in preschool and
kindergarten, namely numbers, dates, and colors.

_ 8 _
(9) Sections of Printed Dictionaries Generated from Database

Carrier to English

English to Carrier

Topical Index

Root List (By English Gloss)
Root List (Alphabetical)
Stem List

Stems Sorted By Root

Notes on Stems

Affix List

Index of Affixes by Gloss
Index of Scientific Names
Index of Place Names

Index of English Place Names
Index of Loanwords

Credits for Illustrations

In addition to the usual main sections, there are also quite a few indices, which
group together words of certain types and simplify finding them. The index of
scientific names, for example, is useful to biologists.

Typical pages from the Carrier-to-English and English-to-Carrier sections of a
dictionary are illustrated in (10) and (11). A topical index page is illustrated in
(12). The various indices are exemplified by (13), which contains a page from an
index of scientific names. There are also lists of roots and lists of stems, organized
alphabetically and by root. These provide a means of looking up a verb form that
is not in the dictionary. If the user is sufficiently knowledgable, he may be able to
determine what stem of what root he is dealing with and on this basis analyze the
form. Typical pages from the root and stem lists are illustrated in (14)-(17).

o -

-chaike

chunlai

basket

belongs to you (1), it

-chaike N Plural of -chai, q.v..

chaimun N Chinese person, Oriental per-
son. Etymology: Loan from English Chi-
naman.

chaimun ye’ulht’es-i N wok. Etymology:
Literally, “the thing that a Chinese person
uses to fry with”.

chainamun N Chinese person. Etymology:
Loan from English chinaman.

chainya V [0-ya < yaj] you (1) were con-
ceived. [PA]

-chak N ribs.

-chakesgwulh N navel.

-chak’ests’oh N armpit.

chalhts’ul N baby.
hts’ulne

chalhyal N basket. A large basket used
for storage or in which berries are accu-
mulated. Normally carried on the back.

Duoplural: chal-

A tilh and a chalhyal.

chan N rain. (1) [C
stopped raining.’

chanjo N newly sexually mature cow
moose.

chantoo N rainwater.

-chanulhyeh N tumor in belly, inflamed
appendix.

-che N sleep. (1) Duche tezluz. ‘He wet
his bed.” (2) Duche iluz. ‘He wet his bed.”

tsul ‘uja. ‘It

(3) Duche yalhtuk. ‘He talks in his sleep.’

-chela N fish tail.

chilkot’in N Chilcotin person.

chilh N young man. Duoplurals: chilhuke,
chilhne, chilhke

chilhuke N Irregular plural of chilh, q.v..

chintoh N forest, bush.

-chistl’oh N younger brother. Duoplural:
-chist’ohke

-cho SUFFIX big. (1) Lhukwcho. ‘Big
fish.” (2) Nawhulnukcho. ‘Bishop [big
priest].” (3) Bets’ulh’uzcho. ‘Sledgeham-
mer [big hammer].’

chos N canoe paddle.

-chul N younger brother.

-chun N handle. (1) Tsetselh buchun. ‘The
axe’s handle.’

-chun N trunk of tree.

chundoo N Lodgepole Pine, locally known
as “Jack Pine”, which standardly refers to
Pi-
nus banksiana. [Pinus contorta latifolia]

chundoo — Lodgepole Pine

chundulkw’uz N woodpecker.

chunih N marten. [Martes americana]

chunihcho N fisher. [Martes pennanti] Et-
ymology: “big marten”.

chunlai N salamander, lizard. The only
species of salamander found in the region

paratively narrow and deep. When col-
lecting berries, a tilh will normally be
emptied into a chalhyal.

basket. N chalhyal. A large basket used
for storage or in which berries are accumu-
lated. Normally carried on the back.

basket, soapberry. N nawusts’ai. Used
for collecting nawus soapberries.

basket, tray-like. N tl'usts’ai. In con-
trast to a tilh, which is narrow and deep,
a tl'usts’ai is wide and shallow. When col-
lecting berries, it is typically emptied into
a chalhyal.

bat. N ’ut’az.

bat. [Myotis lucifugus] N liyabdut’ai. The
only kind of bat found in the region is the
Little Brown Myotis.

bath, I take a. V toonasya. [IA] [0-ya <
yai]

bath, one takes a. V toonats'uyah. [IA-
customary] [0-yah < yaq]

bath, they (2) are taking a.
ahu’as. [TA] [0-’as < ’as1]

bath, we (3+) take a bath. v
toonats'udelh. [IA] [0-delh < dely]

bathroom. N tsanbayoh.

bathroom, I am going to the. V ’'un
natesda. [FA] [0-da| [polite euphemism]

V toon-

beads. N kw’usul.

beans. N lubinus.

bearpaw snowshoes. N suske.
bearpaw snowshoes. N shaske.

beat him soundly with a stick, he. V
yayalht’o. [class: Iro-u] [PA] [lh-t'0 < t’03]

beautiful, it is. V dinzoo. [abs: d] [IA]
[0-zo0 < z001]

beaver. [Castor canadensis/ N tsa.

beaver, baby. N tsayaz.

beaver, big. N tsati.

beaver, female. N tsa’at.

beaver, old. N tsati.

beaver, young. N tsatsul.

beaver dam. N ’ulh.

beaver dam. N lht’at.

beaver lodge. N tsaken.

beaver path under the ice.
sati.

beaver paws. N tsake.

beaver tail. N tsache.

became, he. V suli. [PA] [0-1i]

became, I. V susdli. [PA] [0-1i < lig]

becomes, it. V wuleh. [OA] [0-leh < lip]

bed. N Ili.

bed of spruce boughs. N tel.

bed sheets. N lilik’usdla.

bedpan. N benats'udutsun.

bedroom. N ts’uztezbayoh.

bedspread. N lilik’usulhchooz.

bee. [Apis mellifera] N ts’ihna.

beehive. N ts’ihnat’o.

beehive burner. N beduzk'un.

beer. N hawus.

beer. N too nanteldzoos.

beets. N lhits’e.

before. COMP whutso. This is the post-
position tso “before” inflected for areal ob-
Jject.

behind. PP -k’oh.

behind. PP t’ak.

behind the house.

bell. N luglos.

belly. N -but.

bell-ringer. N luglosman. The man who
rings the church bell.

belongs to him, it.
[lh-dzun < dzuny]

belongs to it, it. 'V whe’ilhdzun. [abs:
wh] [TA] [Ih-dzun < dzuny]

belongs to me, it. V se’ilhdzun. [IA]
[Ih-dzun < dzunq]

belongs to them, it.
[TA] [Ih-dzun < dzun;]

belongs to us, it. V nehoolhdzun. [abs:
wh] [TA] [Ih-dzun < dzun;]

belongs to us (2+), it.
[IA] [Ih-dzun < dzun;]

belongs to you (1), it.
[IA] [Ih-dzun]

N tunyoht-

ADV koont’ak.

V be’ilhdzun. [IA]

V hube’ilhdzun.

V ne'ilhdzun.

V nye'ilhdzun.

30

146

(10)

(11)

Topical Index

Acer glabrum

Index of Scientific Names

Vaccinium myrtilloides?

beaver path under the ice tunyohtsati
black bear den sus’an

dam, beaver 'ulh

dam, beaver lht'at

leech hoolht’ukw

leech hoot’ub

moose tracks dunik’oh

tracks, grizzly bear shask’oh

tracks, rabbit gohk’oh

2. Fish and Shellfish
2.1. General

fish Thukw
fish, big Thukwcho

2.2. Fish

burbot tsintel

char bet

Dolly Varden tsabai
kokanee gesul

lake trout bet

ling cod tsintel

Mountain Whitefish lhoo
Red Salmon talukw
Salmon, Sockeye talukw
Sockeye Salmon talukw
Squawfish, Northern whusi
Sturgeon, White lhkw’encho
sucker, Largescale goosibai
trout, Rainbow duk’ai
whitefish Thewh

2.3. Parts

backbone of fish Thukwyun
bones of fish lhukwghak
fin lhukwghak

scales of fish -goos
skeleton of fish Ihukwghak
tail, fish -chela

2.4. Miscellaneous
slime, fish Thokwtl’us

3. Amphibians And Reptiles

Frog, Spotted dulkw’ah
lizard chunlai

Spotted Frog dulkw’ah
salamander chunlai
snake tl'ughus

Toad, Western tsasdli
‘Western Toad tsasdli

4. Birds
4.1. General

American Crow datsan
Bald Eagle tsebalyan
Bluejay (Steller’s Jay) tehgwuzeh
bird dut’ai

bird, little dut’aiyaz
bird, little gagiyaz

crane delh

crow datsan

duck dut’ai

Fool Hen nat’oh

Grebe, Red-Necked ts’olh
Grouse, Spruce nat’oh
goose khoh

Helldiver ts’olh
hummingbird ts’unalhduz
Jay, Canadian gwuzeh
Jay, Gray gwuzeh

Jay, Steller’s tehgwuzeh
loon dadzi

Mallard Duck t'ugicho
owl musdzoon
Red-Necked Grebe ts’olh
Robin, American sewh
Ruffed grouse ’utsut
Spruce Grouse nat’oh
Steller’s Jay tehgwuzeh
sandpiper wedlew

seagull besk’i

swan ts'incho

Tree Swallow ’uschas
‘Whiskey Jack gwuzeh
woodpecker chundulkw'uz

Acer glabrum Kkhasdzoon
o

Alces alces andersoni duni
Alnus viridis Kus
Ambystoma macrodactylum chunlai
Amelanchier alnifolia Wenchun
Anas platyrhynchos ugicho
Apis mellifera ts'ihna
Betula glandulosa glandulifera whuzaz
Betula occidentalis nach’ulh

Betula papyrifera Kui

Porphyra abbottae Krishnamurthy Ihaga’as

Prunus emerginata nulgoosmai
Pseudotsuga menziesii glauca chuntsi
Ptychocheilus oregonensis whusi
Rana pretiosa dulkw’ah
Rangifer tarandus whudzih
Rosa nutkana whuschun
Salix species Kuidlih
Salvelinus malma tsabai

Salvelinus namaycush bet
Shepherdia canadensis nawus

Bryoria lanestris dohgha Shepherdia canadensis nuwus
Bufo boreas tsasdli Sorbus sitchensis chiekw
Canis latrans tintulhi Sphagnum capillaceum tw'al
Canis lupus yus Tachycineta bicolor *uschas
Castilleja miniata itni iasci icus colum. il
Castor canadensis tsa Thamnophis sirtalis Pughus
Catostomus macrocheilus goosibai Turdus migratorius sewh
Cicuta douglasii honganicho | Ursus americanus sus
Cornus stolonifera Wentsik Vaccinium myrtilloides? silhtsul
Corvus brachyrhynchos datsan

Cyanocitta stelleri tehgwuzeh

Dendragapus canadensis nat’oh

Erethizon dorsatum ts'it

Felis concolor booscho

Felis domesticus boos

Felis lynx wasi

Fragaria species tindzi

Gavia immer dadzi

Glaucomys sabrinus alpinus tsunalhbuz

Gulo gulo noostel

Haliaeetus leucocephalus tsebalyan

Heracleum lanatum
Juniperus communis
Larix laricina

os
datsan’algut
ts'0obiz

Ledum groenlandicum ‘uyak’unul’a
Ledum groenlandicum yak'unulb’a
Lota lota tsintel
Lutra canadensists’olh tsis
Marmota caligata dutni
Marmota monax Kani
Martes americana chunih

Martes pennanti chunihcho

Mustela vison telhjoos
Myotis lucifugus liyabdut'ai
Oncorhynchus mykiss duk’ai
Oncorhynchus nerka gesul
Oncorhynchus nerka talukw
Ondatra zibethicus tsek’et
Perisoreus canadensis gwuzeh
Pinus contorta latifolia chundoo
Podiceps grisegena ts'olh
Populus tremuloides rughus
Populus tremuloides rughusyaz
Populus trichocarpa landooz

— 245 —

- 320 -

(12)

(13)

,10,

abrade Roots (By English Gloss) eat ghut [125] Roots (Alphabetical) neh [194]
abrade zas; class-sdo-u *isy ghut; To cut with a saw. Tag: saw. endearing. Tag: sleep.
agile doo; class-2df-c chus; ghuz;, To roll over, capsize. Tag: capsize. k’00z; To be bitter. Tag: bitter.
angry ch’oh; class-2df-u *at) gwuih; To catch ina trap (as opposed to a snare | k’ui’; To limp. Tag: limp.
ask Kuty clear dzum; or net). Tag: trap. k’un; To be red. Tag: red.
awake nihy cloud moves dey gwut; To be dull, not sharp. Tag: dull. K’unz To burn, Tag: burn.
axe tsel; cold K'uz; jai To say. Tag: say. K'us; To flick, usually with the finger. Tag:
bad tsi’) cold lig jas; To fish with hook and line. Tag: fish. flick.
bald kwun; cough kwus; Jjass To secrete bodily fluid. Tag: secrete. K’uz; To be cold to the touch. Tag: cold.
bark tse; count to) jeh; To scrape. Tag: scrape. khulh, For liquid to be deep. Tag: deep.
be lip crack wuly jooh; To hop, like a rabbit. Tag: leap. kwui; To vomit. Tag: vomit.
be t'oh; cranky ke joohy To put fish or meat on the drying poles. | kwun; To be bald, bare. Tag: bald.
belong dzun; crawl ts’eh; Tag: rack. kwus; To cough. Tag: cough.
big cha; crawl-12 get1 joot; For diarhea to flow. Tag: diarhea. kwuz, For a single heavy object to move. Tag:
bind ghel, crawl-3 *asy jum; To pop, eat by popping. Tag: pop. drive.
bite ch’ul, crooked zoh; jut; To decay. Tag: decay. kw'a’; To burp. Tag: burp.
bitter k’ooz; crunch goos| Jjuty For smoke to move. Tag: smoke moves. kw’uz; To knock. Tag: knock.
black gus, crush tsut, jutz To be fearsome, dangerous. Tag: fearsome. | kw'uz, To snip, as with scissors. Tag: snip.
blink bul; cry tsoy ka'; To sew. Tag: sew. la; To die collectively. Tag: die collectively.
blow yolh; curl dooz; kaih; To handle the contents of an open con- |lai; To be many. Tag: many.
blue dzan, cut with blade tas; tainer. Tag: class-coc-c. lan; To be many. Tag: many.
boil mulh; dab tas) kak; To be shallow. Tag: shallow. lat; To float. Tag: float.
both tet; dance daih, kat, For multiple objects to move without the |le; To handle plural default objects. This is one
braid ‘ool deal with nay application of an obvious external force or any | of the classificatory verb stems. Tag: class-
break tuky decay jut; form of locomotion, as when falling due sim-| mdo-c.
burn Kun, deep Khulh, ply to gravity. Apparently also used for some |le, To make. Tag: make.
burp kw'a’ diarhea jooty single objects either because they are flat or|lez; To cook by immersion in hot liquid or
buy ket die tsai; large and heavy. Tag: fall-3. steam. Tag: stew.
cache tsa, die collectively 1a; ke, For two people to sit or be located. Tag: |li; To be, become. Tag: be.
call yihy dirty tsuny sit-2. li; To feel that one’s body is cold. Tag: cold.
calm ghely dissolve lit, ke, To go by boat. Tag: go by boat. lit; For a granular substance such as snow, ice,
capsize ghuz, distant dza, ke To be cranky. Tag: cranky. or sugar to dissolve. Tag: dissolve.
chase yoot; do eny ket; To buy. Tag: buy. looh; To snare. Tag: snare.
chew *alh; drag gusy ket; To slip. Tag: slip. looz; To go by sleigh. Tag: sleigh.
class-body-c tip draw tsiz koh; To track. Tag: track. luz; To excrete fluid. Usually, to piss or urinate,
class-body-u noy dream dlal; kui; To be sweet, to have a (good) taste. Tag:| but also applicable to sweating. Tag: piss.
class-coc-c kaih, dream (1-2) ter sweet. mai; To be short and stubby. Tag: stubby.
class-euo-c dzaiy dream(3+) tes; kuk; To clap, slap. Tag: slap. mulh; For liquid to boil. Tag: boil.
class-fluffy-c do; drink naij kut; To ask a question. Tag: ask. mulh; To roll. This is used when the object
class-hay-c dzoh, drive kwuz, k’a; To be fat. Tag: fat. itself rolls. Tag: roll.
class-liquid-c dzeh; dry gui; Kan; To ignite. Tag: ignite. na; To deal with, work on. Tag: deal with.
class-liquid-u yuly dry yiz k’as; To file, grind an edge, as when sharpening | nap To move. Tag: move.
class-Iro-c tan, dull gwut; a kuife. Tag: file. naz To be alive. Tag: live.
class-lro-u t’o3 dull pain zoon; k’et; To swell up. Tag: swell. nai; To drink. Tag: drink.
class-mdo-c le; dwell i k0’ To sleep. This is babytalk, used with small | nat, To split, as wood, by any means, e.g. with
class-mdo-u dely dye dilh; children and in imitation of the speech of small | an axe or with a wedge. Tag: split.
class-mushy-c tloh, eat bah, children or of older people speaking to small | nat, For light to move. Tag: light moves.
class-sdo-c *aiy eat yiy children. Use by adults, when not joking, is|nehs To extinguish a light or fire. Tag: extin-
279 285
kai [471] Stem List kwui [564] ghel Stems Sorted By Root kuk
kai PA ka'y sew kut IA cust kut; ask OA stat ghelh FA jut
kai ~ PA mom kaih; class-coc-c kut TA kut; ask ghelh, scrape 1A ghelh 0A jut
kai OA Ky sew kut PA mom ket slip ghez, fall over 1A ghez jut; smokemoves IA prog jolh
kai OA mom kaih, class-coc kut PA kut; ask PA ghez Jjuty fearsome 1A jut
kaih 1A mom kaih, class-coc-c kut FA mom kat, fall (34) FA ghes ka't sew A ka!
kak IA stat kak; shallow kut FA kut; ask FA ghus PA kai
kal PN mom kaih; class-coc kut OA mom ket slip ghoy growl A gho FA k'
kalh FA mom kaih, class-coc kut OA kut; ask PA gho oA kai
! ghoh; web 1A ghoh kaih; class-cocc IA mom kaih
kalh OA mom kaih; class-coc kut PN kut; ask ghui, kill-12 PA ghui A cont ka
kat IA cont kat; fall-3 kut FN mom ket slip ghui, kill-12 FA ghelh PA mom lai
kat 1A kuk; slap kut FN kut; ask ghut, saw 1A ghut kaih; class-coc FA mom kalh
kat PA mom kat; fall3 kKa IA stat Ka; fat PA ghut OA mom ki
kat PA mom kat; fall (3+) kaih IA Kan; ignite FA ghut OA mom kalh
kat PA rep kuk, slap k’al PN Kan; ignite 0A ghut PN mom kal
kat PA iter kuk; slap k’al FN Kan; ignite PN ghut kak; shallow IA stat kak
ke 1A ke; sit-2 Xalh IA prog kunp, burn FN ghut kat, fall-3 TA cont kat
ke IA cont key boat Kalh FA Kan; ignite . ON ghut kat, fall (3+) PA mom kat
ke TA stat keg cranky Walh FA Kun, burn ghuz; capsize PA ghuz kat, fall-3 PA mom kat
ke FA stat ke; cranky Kan PA Kan, ignite FA ghus kat, fall (3+) FA mom kut
s ! A hes ke, sit-2 1A ke
ke OA mom key boat Kan PA Kunp burn o ghes 1
ke OA comt ke, boat Kan OA Kan, ignite ; ghus kea - bout A cont ke
2 1 lgn PN ghus IA prog kelh
ke FN cont kep boat Kan IN Kan; ignite FN ghus IA cust kuih
ke ON cont kep boat Kan ON Kan; ignite gwuih; trap PA gwui PA mom kui
kel PN cont ke boat k’as IA K’as; file FA gwui PA cont kui
kel FN mom ke, boat kas FA Kas; file oA gwuih FA mom kelh
kelh IA prog kep boat Kas IA Kuz; cold gwut; dull IA stat gwut FA cont keh 1
kelh FA mom ke boat Xaz PA Kas; file Jay say PA ja OA mom ke
kelh FA cont kep boat Kaz PA Kuz; cold jas; fish A Jas OA cont ke
kes TA cont kwuz drive Kaz OA Kuz; cold PA Jus PN cont kel
kes FA cont kwuz drive Kaz PN Kuz cold FA Jus EN mom kel
ket IA ket; buy Ket PA Ket; swell up) oA Jus EN cont ke
Y jas¢ secrete 1A jas ON cont ke
ket PA ket; buy Ko IA Ko, sleep PA 185 ke Ly A stat K
ket OA ket; bu Kooz IA stat Kooz bitter . Jaz € cranky e
1 uy . oz D FA jas FA stat ke
ket OA mom ket slip Kui’ IA cont kuiy limp 0A jas ket: buy A ket
ket PN ket; buy Kun TA stat Kum red PN jaz PA ket
kez PA mom kwuz, drive k’'un IA k’'uny burn jehy scrape IA jeh FA kulh
koh IA prog koh; track Kun PA Kuny burn jooh; hop IA cont jooh 0A ket
kui A stat kui; tasty Xun OA Kuny burn IA cust jooh PN ket
kui PA mom kep boat Kus IA stat kus; flick PA mom jok FN kulh
kui PA cont key boat Kus IA cont k'us; flick PA cont joo ket slip IA stat kut
kuih IA cust ke; boat Kus IA cust Kus; flick jooh; rack 1A jooh 1A cont kut
kuk PA kuk; slap Kus PA Kusi flick joot, diarhea 1A joot PA mom kut
kuk FA kuk, slap Kus FA stat Kuz cold) PA Joat OA mom. ket
kulh FA ket; buy Kus FA Kuzy cold Jumi - pop A Jum OA mom kut
kulh FN ket; b 1 IA stat K 1d PA Jum. FN mom kut
u ety uy uz sta uz o FA jum koh;, track IA prog koh
kut IA stat kety slip khulh IA stat Khulh decp jut decay A ut b tasty A sat ki
kut A cont ket slip kwui IA kwui; vomit PA jut kuk, slap IA Kat
— 294 — — 305 —

(17)

— 11 —

The provision of a topical index is one of the more unusual features of these
dictionaries. Reference dictionaries are almost always organized orthographically
or phonologically, but it is not uncommon for dictionaries produce by communities
whose language is endangered to be topically organized. This is probably due to
the fact that community members regard the language as a repository of culture
and so see a topical organization as a sensible reflection of their culture. From their
perspective, an alphabetically arranged dictionary is in an essentially random order.

Where the topical organization is the only one provided, this is problematic, for
it is very difficult to use a topical dictionary to look up an unknown word. Fur-
thermore, topical dictionaries are usually limited to nouns, since it is nouns that
are most easily organized into topical categories. Even where other syntactic cate-
gories are included, a topical organization tends to limit the comprehensiveness of
the dictionary because of the difficulty of fitting many words into topical categories.

In most circumstances, therefore, a purely topical organization is not desirable.
However, a topical index to a dictionary whose principal component is organized or-
thographically, is a useful addition. In addition to providing a facet of the dictionary
that makes sense to the elders, a topical index is very useful for language teachers
and curriculum developers who wish to create lessons dealing with particular top-
ics. For similar reasons, it is useful to language learners, who can bone up on the
vocabulary for a particular area. A topical index is also useful for lexicographers.
If well done, it provides a good record of what has been done and shows up gaps in
the coverage of the existing dictionary.

It is not terribly difficult to generate a topical index from a computer database.
Indeed, I am surprised that it has not been done more often. The key is to tag
each record with a semantic field specification. The records are then sorted by
the semantic field specification and index entries generated in that order. Section
headings are generated from the semantic field specifications by keeping track of
changes and emitting a new section or subsection header whenever there is a change.
Once the categories have been chosen and records tagged, the arrangement of the
topical index can easily be changed by changing the ordering of the categories in
the sort order specification.

For those such as myself with a propensity to classification, it is tempting to
create a deep classification, one with many levels. This is unwise. It is difficult
to format more than two levels of headings attractively, and a classification that
is too highly ramified produces many sections with very few entries. This is not
merely an aesthetic consideration — not only does the user not need an elaborate
classification, but I believe that one actually makes it more difficult to find things.

We have only begun generating topical indices fairly recently, so due to our
own lack of experience and, apparently, that of other lexicographers, some problems
remain. One is that of redundant entries. The entries we make come from the inverse
header field, which was originally intended for generating the English to Carrier
headers. This field often contains multiple entries, since it is often convenient to
provide more than one way to look up a word. The various inverse headers tend to
be distributed through the dictionary by alphabetical sorting, but in a topical index
they of course are clustered together. This looks odd and in general is probably
unncessary. For example, in the page illustrated in (12), we have both “Sockeye

— 12 —

Salmon” and “Salmon, Sockeye”, which seems unnecessary and a little bit ugly. One
solution would be to create a separate topical index header field for each record and
enter it manually. Another would be to use only one of the inverse headers, perhaps
the first. Still another would be to generate topical index headers automatically
from the gloss field, as Nathan and Austin (1992) suggest for inverse headers. I do
not know whether there is a good algorithm for this.

Another problem is what classification to use. It is not too hard to devise a
reasonable classification for nouns. Indeed, there are a number of models that can
be used. However, it is rare for topical dictionaries to include verbs. Where they do,
they tend to list those verbs that are obviously and specifically associated with the
categories used for nouns and to make no attempt at listing verbs in a comprehensive
fashion. If, as seems desirable, one wants to include verbs comprehensively in a
topical index, it is necessary to find a good classificatory scheme for verbs.

The classification used in the most recent Carrier dictionaries represents a first
attempt at this. There being little precedent known to me, it was arrived at larger
by brainstorming. I found the classification of English verbs by Levin (1993) useful
as a stimulus, but it was not possible to follow it closely since it is based to a consid-
erable extent on syntactic properties that are not relevant to a topical classification.
Devising a really good classification system for verbs remains a topic for research.

One thing made possible by generating dictionaries from a database is printing
them in a variety of writing systems. Our system is set up to allow for printing
in four different writing systems. These are exemplified in (18), which presents the
words “old man” and “frequently” in all four writing systems.

(18) Examples of the Four Available Writing Systems

Carrier Linguistic Committee duneti lhghun
Morice Roman denéthi Iren
Carrier Syllabics BRID) L>>
International Phonetic Alphabet daneti Inan

The writing system in general use for Carrier is the Carrier Linguistic Committee
writing system, a Roman-based system developed in the 1960s. The Carrier material
in the dictionary databases is represented in this sytem, with the slight modification
that underscores, used to distinguish lamino-dental fricatives and affricates from
apico-alveolars, are written as separate characters preceding the consonant in the
database. A typical page is shown in (19).

Some elders prefer the writing system that they learned from the 1938 edition
of the Roman Catholic Prayerbook, which is the phonetic writing system used by
Father Adrien-Gabriel Morice in his scholarly publications. Rather than attempting
to implement allophonic rules, we generate a phonemicized version of this writing
system. This is illustrated in (20).

The first writing system used for Carrier was the so-called Carrier syllabics, a
derivative of the Cree syllabics introduced in 1885. It is no longer widely used, but
some people strongly favor it. A page in syllabics is illustrated in (21). Finally, for
the use of linguists and occasional others it is possible to produce dictionaries in the
International Phonetic Alphabet as illustrated in (22).

,13,

duzesghut

e-

Telatséknen

tahoté

duzesghut V [0-ghut < ghut;] I did not
saw. [PN]

duzesnat V [lh-nat < nat;] I did not split.
[PN]

duzoh V [0-zoh < zohy] it is crooked. [abs:
o] 1]

duzoon V [0-zoon < zooni] it aches dully.
[IA] (1) Sts'un [duzoonl. ‘I have a dull pain
in my bones.’ (2) Syoh [duzoonl. ‘I have a.
dull pain in my chest.’

dlohhuninzun V [0-zun < zunj] they are
smiling. [TA]

dlohninzun V [0-zun < zuny] he is smiling.
[1A]

dlohnuszun V [0-zun| I am smiling. [IA]

dlooncho N packrat.

-dzat N shin.

-dzek N ear canal.

dzen N day. (1)
is working every day.’

dzen totsuk ADV daily, every day. (1)
duni tanalgok. ‘Every day
the moose goes into the water.’

dzetniz N noon.

-dzi N heart. (1) Budzi nduda. ‘He has
heart trouble.’

-dzi nalts’ut V [l-ts’'ut < ts’uti] to have
had a heart attack. [PA] This literally
means “X’s heart fell down”, so it is con-
Jjugated for subject by possessive prefixa-
tion of the noun -dzi “heart”. (1) Budzi
nalts’ut. ‘He had a heart attack.’

dzihtel N board, lumber.

dzihtel be’ulh’en N sawmill.

-dzik’ut N the upper chest, the region en-
compassing the breasts.

-dzo N ear. This refers to the ear considered
as a whole, especially the exterior. When
the canal in particular is referred to, one
uses -dzek, q.v.

dzobal N earmuffs. [slang]

-dzobal N earlobe.

dzoh ADV badly. (1) nenulhbas.
‘He is driving badly.’

totsuk ut’en. ‘He

dzoot N coat.

dzootdukw N vest.

dzoozt’an N shirt.

dzulh N mountain.

Dzulh K’undut’az N Chinese Rapids.
The first night’s camp up the Fraser
River from Lheidli. Etymology: Literally,
“mountain cut in two”.

Dzulhcho N Rocky Mountains. Etymol-
ogy: “big mountains”.

Dzulhti N Rocky Mountains. Etymology:
“great mountains”.

Dzulhyazchun N The former village be-
longing to the Lheidli band on the north
bank of the Nechako, west of Myworth.
Etymology: Literally, “at the base of the
little mountain”. So named because the
village was located at the base of a cut-
bank.

e- PREFIX future tense. This prefix goes
in the tense/aspect slot immediately pre-
ceding the inner subject. Tt combines with
the /i/ of the second person singular and
first person dual subject markers to form
/a/.

Go Around By Boat [FA]

singular dual plural
1 nuteskelh nutadukelh nuts’utekelh
2 nutankelh nutehkelh nutehkelh

3 nutekelh

e- PREFIX progressive aspect. The pro-
gressive aspect indicates that action is
in progress toward the completion of a
goal. For example, if someone is swim-
ming around with no particular goal, the
imperfective nube is used. If he or she
is on the way from one point to another,
the progressive ubelh is used. This posi-
tion 3 prefix appears only when two con-
ditions are satisfied. First, there must not
be a position 2 subject marker (that is,
a subject marker immediately preceding
the verb base). This limits its occurence
to the first person plural and third per-

The Salmon River West of Shelley.

Telatséknen N April. Etymology:
of the Cottonwood buds”.

Tenatiqadzén N Easter Sunday. Etymol-
ogy: “the day he (Jesus) rose again”.

Teyenkhoh N Hospital Creek. In Josie
Paul’s trapline. Etymology: “medicine
man creek”.

Timosdzén N Sunday. Etymology: Com-
pound of timos borrowed from French Di-
manche and Carrier dzén “day”.

Token N man’s given name. Etymology:
Borrowed from English Duncan.

t- PREFIX t-class absolutive argument. In-
dicates that the absolutive argument (the
subject of an intransitive verb or the ob-
ject of a transitive verb) belongs to the
t-noun class, which roughly speaking con-
sists of stick-like things. (1) Dzihthél
netelat. ‘The log is floating around.’

ta ADV already.

-ta N lips.

ta- PREFIX inside. This refers to the inte-
rior of a house or building. It contrasts
with té-, which refers to the interior of
a container such as a box or canoe. (1)
Tahenintél. ‘They walked inside.’ (2)
Tampez. ‘He parachuted in.’ (3) Yéztli
tanainiltlekhw. ‘He led the horse back in-
side.’ (4) Néretanqok. ‘He hopped in to
us.’” (5) Lthi tanaininthan. ‘He brought
the rifle back inside (the house).’

tata N illness. (1) ntsi- pé nteta. ‘He
has a serious illness.’

tatelnat V [knat < nat 1] we (2) split.
[PA]

tateret
[PA]

tatél-éz V [l--éz < -¢§;] he walked in, he
put his foot inside. [PA]

tatélké V [l-ké < ké;] he put his finger in-
side. [PA]

tatélnek V [l-mek < nig] he put his arm
inside. [PA] (1) Taténtaz tatélnek. ‘He

time

V [0-ret < ret 1] we (2) sawed.

put his arm through the (open) window.”

taténthan N door.

taténthan unthen N door hinges.

taténthanrenés-ai N doorknob.

taténtaz N window.

taténtaz tatéltcuz
dows.

taténtaz hukhwatimpal N curtains for
window.

taténtaz hukhwatinla N curtains for win-
dow.

taténtaz tsaustla N curtains for windows.

tadzi N loon. [Gavia immer]

takét N spear.

tahatél-éz V [l--éz < -6§1] he took his foot.
out. [PA]

tahatélké V [l-ké < ké;] he took his finger
out. [PA]

tahatélnek V [lnek < nip] he took his
hand out. This refers to withdrawing one’s
hand from an opening, such as window
through which one has inserted an arm.
[PA]

tahanatélké V [Lké < ké;] he took his fin-
ger back out. [PA]

tahanaininthan V [0-than < than;] he
brought it back outside. [abs: kén] [class:
Iro-c] [PA] (1) Lthi fahanaininthanl ‘He
brought the rifle back out (of the house).’

tahazsai V [0-tSai < tSaii] they died. [PA]

tahenéltsek V [l-tiek < tSek 1] how many
of them are there?. [IA]

tahenintél V [0-té] < tél;] they (3+)
walked inside. [PA]

taheyankhai V [0-khai < khaihy] they
brought it in. Describes motion toward
the speaker. [class: coc-c] [PA]

tahinzu V [0-zu < z14] they are generous.
1]

tahoté V [0-t¢] what would happen?. [OA]
(1) ‘Bt -eldzis liliket Sesthi hoh nteneszen:
”Benta sepah tahoté?” ‘When I was in bed
that night I thought: ”What wonders will
tomorrow bring?”’

N curtains for win-

42

29

(19)

(20)

€ PP against, from. (1) ‘He hid from us
for a long time.’

" N
Sitka Mountain Ash. [Sorbus sitchensis]

1" — Sitka Mountain Ash

@' N porcupine quill.

70" SUFFIX old, worn out. (1) (B4,
‘Rags.’

- PREFIX -class absolutive argument. In-
dicates that the absolutive argument (the
subject of an intransitive verb or the ob-

ject of a transitive verb) belongs to the "
-noun class, which roughly speaking con-
sists of stick-like things. (1) &D' HDdC"
. ‘The log is floating around.’

C ADV already.

-C N lips.

C- PREFIX inside. This refers to the
interior of a house or building. Tt con-
trasts with D-, which refers to the inte-
rior of a container such as a box or ca-
noe. (1) €>»'D. ‘They walked inside.’
(2) ct+Dz. ‘He parachuted in." (3) 920
CCp>ILD" ‘He led the horse back inside.’
(4) ">c’Q@". ‘He hopped in to us.’ (5)
‘D CCP>'Aa’. ‘He brought the rifle back
inside (the house).’

CC Nillness. (1) ‘He has a serious illness.’

CD'3 V [-3 < 31] he put his finger inside.
[PA]

CDO' V[-D' < 9] he put his arm inside.

[PA] (1) cD*@z €D, ‘He put his arm
through the (open) window.’

CcD’a’ N door.
CD*a’ ¥’D’ N door hinges.
CD’az N window.

CD’Qz CD4Yyz N curtains for windows.
cD’az V'<€D+a' N curtains for window.
CD’Qz V'<€2’C N curtains for window.
Cco’az &VsC N curtains for windows.
CO>" V [0->7 < >Tq] we (2) sawed. [PA]
COILT V [LLT < C7q] we (2) split. [PA]
C® N loon. [Gavia immer]

C3" N spear.

C< N moustache.

C<D'3 V [-3 < 31] he took his finger out.
[PA]

C<DN' V [-9' < 9] he took his hand
out. This refers to withdrawing one’s hand
from an opening, such as window through
which one has inserted an arm. [PA]

C<CD'3B V [-3 < 31] he took his finger
back out. [PA]

Cc<CB»’a’ V [0-a’ < a’j] he brought
it back outside. [abs: 3'] [class: Iro-c]
[PA] (1) ‘D c<c>»’a’. ‘He brought
the rifle back out (of the house).’

C>15 V [0-u < U] they are generous. [TA]

CAD V [0-D] what would happen?. [OA]
(1) ‘When I was in bed that night I
thought: *What wonders will tomorrow
bring?”’

CAP* V [0-D* < 1] what colour is it?.
[abs: D>t] [IA] (1) 'D CAD*? ‘What
colour is your house?’ (2) OB CAD*
? ‘What colour is the ball?’

C>713' V [-3' < 3'1] how many of them
are there?. [IA]

C>9'D! V [0-D' < D] they (3+) walked
inside. [PA]

Cc>@’8p> V [0-85> < 83>t they brought it
in. Describes motion toward the speaker.
[class: coc-c] [PA]

C>"' N June. Etymology: “time of full
summer”.

bak*ai nel?ai V [I-7ai] he is nauseated. [IA]

baladayas N nut. This refers to the kind
that secures a bolt. Etymology: “it twists
on the end”.

balanadesnak V [d-nak] I got rid of him.
[PAl

balanadatesnih V [d-nih] I am going to get
rid of him. [FA]

baloh Q some.

balohte ADYV sometimes.

balanneh N some of the people by him.

bat N sleep. (1) Bal sazelyai. ‘I am ex-
hausted due to lack of sleep.’

bat PPC with him. (1) Nezkeh bal nas
ts’edal. ‘We are going forward together
with our children.’

bat datts’oh V [Lts'oh < ts'ohp] he is yawn-
ing. [IA]

bat?alts’at V [I-ts’al < ts’ady] it aches. [IA]
(1) Ndi snak’az bal?alts’al. ‘This eye
aches.’

bathatalt’o V [l-t’o] it was moved by a
flood. [PA] (1) Ku bathatalt’o. ‘A house
was moved by a flood.’

ban N lake.

ban N roof.

Banéo N Punchaw Lake. Etymology: “big
lake”.

bandada N morning. (1) Taintnai iloh;
bandada ndantanda. ‘Don’t drink; you’ll
be sick in the morning.’

bandada ts’ayi N breakfast. Etymology:
Literally, “morning food”.

bande?uldzih N measuring tape.

bandilyez V [l-yez < yez;] you (1) are as
tall as him. [IA]

bandatayez V [l-yez < yezi| I am as tall as
him. [TA]

banesda&’i V [0-¢i < &11] I shot him acci-
dentally. [PA]

bank’at N roof.

Bank’at Taba N The little lake behind
North Shelly. Etymology: Literally “lake
shore”.

bantu N large lake.
bant’ah N ceiling.
bas N bank of river or lake.

basdi N stretching frame. For tanning
hides.

bask’at N bank of river or lake.

-bat N belly.

-bat x*anez?ai N navel.

batdayinna V [0-na < naj] you (1) are
cooking. [TA]

batdayana V [0-na < naj] he is cooking.
[1A]

batdayasna V [0-na < na;] I am cooking.
[1A]

batdayatesna V [0-na < naj] I am going
to cook. [FA]

batdayatesnat V [0-nal < naj] I am going
to cook. [FA]

batdangai V [0-gai < gaij] he is skinny.
[1A]

batya?ast’en V [d-Ten < Teny] I am cook-
ing. [IA]

batl’anasla V [0-la] I handed them to him.
[class: mdo-c] [PA]

batsaha’nankat V [0-kat] pimples have
broken out on him. [PA]

batsahaudanzat V [0-zat] he has broken
out in a rash. [PA]

batsentezyat V [0-yat] he tripped. [PA]

batsan nax*agdli V [d-li < lig] he got fat.
[PA]

bats’e?etsas V [0-tsas < tsas] he had a
stroke. [PA]

ta PART also, too. (1) Ts'eke nadaih
t’euninzan. ajan ¢a t’euninzan. ‘The
woman knows how to dance. She also
knows how to sing.” (2) Ts’ekezu ?ink’ez
nzu ¢a hont’oh. ‘She is pretty and she is
also nice.’

-¢ai N grandchild. Duoplural: -¢aike

-caike N Plural of -&ai, q.v..

taiman N Chinese person, Oriental per-
son. Etymology: Loan from English Chi-
naman.

24

29

(21)

(22)

_ 14 _
5. Generating Printed Dictionaries

Printed dictionaries are generated from the databases by executing programs that
extract information from the database, sort it, and generate a set of files suitable
for input to the TEX formatter. The TEX program is then executed on a master
format file, which incorporates the various files generated from the database along
with various fixed files, such as the explanation of the writing system. The overall
process is illustrated in (24).

Since each dictionary has so many pieces, and there are so many intermediate
stages, the production of a dictionary is quite complex. Not only would it be difficult
to keep track of by hand, but if an error occurs at some point, it is desirable not to
have to regenerate everything from scratch, but only what is necessary. The gener-
ation of a dictionary is therefore controlled by the make program, a standard UNIX
utility originally designed for controlling the compilation of computer programs.
Where there are no errors, generation of a dictionary requires five commands, ex-
emplified in (23):6

(23) Commands for Generating a Dictionary

01 make CLCDict

02 cd Forms

03 make

04 make

05 dvips -o Main.ps Main.dvi

The first line tells the make program to do whatever is necessary to generate the
target CLCDict. It will look for instructions as to how to do this as explained below.
Assuming that there are no errors, the result of this step will be the generation of
the various files that go into the dictionary. The second line changes the directory
to a subdirectory called Forms in which the master format file is kept. The third
line executes the make program again. Since it is called with no argument, it will
attempt to create the first target specified in the makefile. If there are no errors, the
result of this step is the execution of TEX and the generation of a device-independent
printer language file. The second make command, on line 04, is not an error. It is
executed twice in order to make sure that the page numbers in the table of contents
and figure credits are correct. Since page numbers are determined anew each time
TEX is run, information containing page numbers must be written out during one
run of TEX, then read back in and used during a subsequent run. The dwi file is
then converted by the dvips program into the Postscript printer language. It is at
this stage that images are actually incorporated. The Postscript file may then be
viewed on the computer or sent to a printer.”

6 Here as in subsequent examples, the line numbers have been added to facilitate exposition.
They are not part of the makefile or program.

7 In practice, when preparing to print rather than to examine the outout on a computer monitor,
dvips will generally be run more than once, each time generating a Postscript file containing a
specified section of the dictionary. Sending a large document to the printer in chunks of, say,
fifty pages each, is better than sending it all in one piece. It allows other users to get their jobs

,15,

=== — = N
Roots | msort RootList awk RootList Contents
1db srt tex tex
| E

StemNotes AlphaOrder
tex . tex
Sents
sdb
| Appendices
N tex
Words CeWordlist, |~ k
1db tex
“Database ‘ g
awk ‘Words msort ‘Words awk EcWordlist }
ihsplit ihsrt tex
awk LoanWords msort LoanWords awk LoanWords } Edition
txt srt tex : tex
awk PlaceNames | msort PlaceNames awk PlaceNames Englt%};(Tltle
txt srt tex .
: GrCatAbbrev
awk EngPlaces msort EngPlaces awk EngPlaces tex
txt srt tex
H tex
awk SciNames msort SciNames awk SciNames :
txt srt tex
Preface -
H tex N
awk Affixes msort Affixes awk Affixes
txt srt tex H
awk EngAffixes msort EngAffixes awk EngAffixes :
txt srt tex
|
awk Topicallndex| msort, [Topicallndex awk Topicallndex 1
split srt tex
awk

|
Stems msort StemList awk StemList
1db srt tex

StemsByRoot
tex

N
PicCredits

Dark boxes indicate underived files. Light boxes indicate derived files. Dotted lines indicate inclusion. Solid lines indicate derivation.

(24) Generating a Printed Dictionary

in, provides opportunities to let the printer rest and make adjustments, and permits minor
changes to be made in sections that have not yet been printed.

,16,

The make program reads a file called a makefile that contains specifications of
dependencies among files and of how files may be created. Here is an extract from
the makefile for a Carrier dictionary.

(25) Part of a Make File

01 CLCDict: CLCCeWL.tex CLCEcWordlist.tex CLCScientificNames.tex
CLCLoanWords.tex CLCPlaceNames.tex CLCRootList.tex
CLCEnglishRootList.tex CLCStemList.tex CLCStemsByRoot.tex
NotesOnStems.tex CLCAffixList.tex CLCAffixesByGloss.tex
CLCEnglishPlaceNames.tex CLCEcTopicallndex.tex

02

03 CLCCeWL.tex: Ce.srt StemList.sp

04 gawk -f $CAR/Scripts/PrepDict.awk -v Orth=clc -v Version=scholars
Ce.srt > tmp

05 cat GenInfo.tex tmp > CLCCeWL.tex

06 echo "\ortho=1" > Forms/ortho

07 rm tmp

08

09 Ce.srt: NoComments.txt

10 msort -t ""P:" -c 1 -s ${CAR}/orders/carriernc.ord -x exclusions

-t ""P:" -c 1 -s ${CAR}/orders/carrier2.ord
-t ""C:" -c¢ 1 -s ${CAR}/orders/cats.ord

-t ""G:" -o -s ${CAR}/orders/english.ord

-d /% NoComments.txt > Ce.srt

The first line indicates that the target CLCDict depends on the files CLC-
CEWL.tex, CLCEcWordlist.tex, etc. This target is not actually a file but is used to
tell the make program what kind of dictionary we want to generate. We would do
this by giving the command make CLCDict. If the files on which CLCDict depends
do not exist or are out of date, the program will attempt to create them.

Line 03 says that one of the files needed, CLCCeWL.tex, depends on two other
files, Ce.srt and Stemlist.sp. Lines 04 through 07 give the commands that must
be executed in order to create CLCCeWL.tex from these two files. Line 04 runs an
AWK program, whose main output goes into the file called tmp. The file GenInfo.tex
is also created as a side effect. Line 05 combines the two files. Line 06 creates a
little file that transmits information to TEXabout the writing system in use, and
line 07 deletes the temporary file tmp.

Line 09 tells us that the file Ce.srt depends on NoComments.tzt. Line 10 says
that it may be created by running the msort program. The rather elaborate tell
msort to sort first on the pronounciation field, using a sort order specified in a file
and exlucing from consideration characters specified in another file, then to subsort
(breaking ties) on the same field using a different sort order and with no exclusions,
then if necessary to subsort on the gloss and finally if necessary to subsort on the
category field.

The bulk of the work of extracting information from the database and formatting
it is done by small programs written in AWK (Aho, Kernighan, and Weinberger
1988). Several features of AWK make it particularly suitable for this kind of text
processing;:

1. automatic storage allocation;

,17,

2. associative arrays, that is, arrays whose indices can be strings rather than
integers;

3. regular expression matching and substitution;

4. automatic parsing of input into records, and of records into fields;

A small AWK program is illustrated in (26). This is a slightly simplified version

of the program that extracts records containing semantic field specifications for
further processing that ultimately generates a topical index.

(26) An AWK Program

01 #Extract records for topical index, that is, records
02 #containing an SF field, an IH field, and a G field.
03 BEGIN {

04 RS ="";

05 FS = "\n?%";

06 }

07 {

08 #Create an associative array with tags as indices.
09 for(i = 2; i <= NF; i++) {

10 split($i, £, ":");

11 rec[f[1]]=substr($i,index($i,":")+1);

12 }

13 if (("SF" in rec) && ("G" in rec) && ("IH" in rec)){
14 printf("%s\n\n",$0);

15

16 CleanUpQ);

17}

The program begins with a BEGIN pattern, which is automatically executed at
the beginning of the program, no matter what the input. Two actions are taken.
The record separator RS is set to a value that makes it treat blocks of text separated
by blank lines as records. The field separator FS is set to a percent sign preceded by
at least one newline character. (Using the percent sign as the basic field separator
allows fields to span more than one line. However, since a percent sign might be part
of the value of a field, we treat as field separators only those percent signs preceded
by newlines.

The remainder of the program consists of a single pattern-action pair in which
the pattern is empty, so the action is taken for each new record. Line 09 loops
through the fields that AWK automatically parses out of the current record. It
starts with field number two because all of our fields start with a percent-sign field
separator, so each record in effect begins with an empty field. AWK numbers the
fields $1, $2, etc. The number of fields parsed out is put into the variable NF.

In line 10 the field is split into pieces separated by colons and these pieces are
put into the array “f”. f[1] therefore contains the tag of the first field. In line 11 the
contents of the field are put into the array “rec”. The index is the tag, which in line
10 was stored in f[1]. The part of the line following the equal sign removes everything

,18,

preceding the first colon.® As of line 13, therefore, the array “rec” contains the fields
of the record, now indexed by their tags.”

Line 13 tests whether the record contains a semantic field specification, a gloss,
and an inverse header. If so, line 14 prints the entire record ($0), followed by two
blank lines to separate it from the next record. Line 16 calls a function not shown
here that cleans up in preparation for the next record. For example, it needs to
delete the current contents of the array “rec”. If it did not, fields left over from
previous records would be mixed with those for the current record.

As can be seen from the diagram in (24), there are numerous points at which
information must be sorted into the proper order. These sorts are carried out by
a program called msort, described in detail in Poser (2000). This is a program for
sorting text files in sophisticated ways, intended especially for linguistic databases.
It allows arbitrary sort orders to be specified, with ranks defined for large numbers
of multigraphs of effectively unlimited length. Records need not be single lines of
text but may be delimited in a number of ways. The entire record may used as the
sort key, or a particular field may be used. Key fields may be selected either by
position in the record or by matching a regular expression to a tag. msort is capable
of sorting on several keys, so that when two records tie on one key, the tie may be
broken on another. Each key may have its own sort order. Any or all keys may be
optional. In addition to lexicographic sorting, sorting by numerical value, date or
time is supported. For each key a distinct set of characters may be excluded from
consideration when sorting in any combination of initial, final, and medial position

in the key field.

8 If we knew that the colon separating the tag from the contents of the field were the only one,
we could just use f[2], but it is quite possible that there will be colons within the content of
the field, so we can’t assume that f[2] will contain all of the content.

9 Notice that if two fields have the same tag, the last one in the record will be the only one in
3 9

rec”. For most purposes this is alright, but a different and more complex parsing technique
must be used when we want to extract repeated fields.

(27) The Sort Process

,19,

(C

read configuration

v

(

read data
to be sorted

S

v

(C

parse into records)

\

(parse records into ﬁelds)

\

(C

identify key fields)

(

assign default for
missing optional key

/N’I‘ransformations
r--r—-—-—~>"~>""~>""~>"~"" > " “"~"“~“"~"T"T”"7F”"¥”¥°*¥"”*¥”°*¥™ ¥ 7" "™ - “~ “~"“~"“""™*>"~>"~"~=—+ A

[convert dates and tlmes) [transform mul tigraphs)

to numeric

|
|
|
Y |
|
|
|
|

[exclude exclusions)

(C

sort)

\

C

generate output)

A good example of the utility of a sorting program with capabilities like those
of msort is provided by the sorting needed to generate the table of stems sorted by
roots. The relevant portion of the make file, slightly edited for presentation, is given

in (28).

(28) The Makefile Entry for Sorting Stems by Roots

02
03
04
05
06
o7

01 StemsByRoot.srt:

StemList.1ldb

-msort -d % -t ""ROOT" -c 1 -s ${CAR}/orders/carrierl.ord
-t ""RID:" -c n
-t ""TM:" -c 1 -s ${CAR}/orders/TM.ord
-t ""ASP" -c 1 -s ${CAR}/orders/ASP.ord
-t ""STEM:" -c 1 -s ${CAR}/orders/carrierl.ord
< StemList.ldb > CLCStemsByRoot.srt

_ 20 _
(29) The Sort Order File for Aspect Categories

stat stative

mom momantaneous
cont continuous

dist distributive
prog progressive
sem semelfactive
rep repetitive

cust customary

This makes use of the ability to specify arbitrary sort orders that have nothing
to do with any language’s alphabetical order as well as the ability to handle long
multigraphs. Here both abbreviated and full aspect names are provided for. The
longest is 13 characters long.

A similar use of this ability is in putting the topical index into order. Here, the
records must first be sorted by semantic field, then, within their category, alpha-
betically. Semantic field specifications may be quite long; the longest, at present, is
gathering-plants-scrapingcambium, which is 32 characters.

The output of the programs that extract information from the database and
format it consits of pieces of text formatted in TEX. The final step in printing the
dictionary is to execute TEX on a file that contains the layout for the dictionary and,
at appropriate places, instructions to insert the contents of other files, containing the
actual dictionary information, which have been generated from the database. The
bit of TEX-formatted text underlying the first entry on in the Carrier-English page
in (10) is shown in (30). The macro \hipu sets up a hanging-indented paragraph
whose first line is unindented with respect to the left margin. Lines 02, 04, and 05
print the headword, category abbreviation, and gloss, which in this case is a cross-
reference to the singular. The macros \pft, \cft, and \gft select the appropriate
fonts. Line 03 does not directly print anything, but records the information that
TEX uses to keep track of the first and last entries on the page so as to generate the
left and right page headers.

(30) An Entry from CLCCeWL.tex

01 \hipu

02 {\pft -chaike}

03 {\mark -chaike}

04 {\cft N}

05 {\gft Plural of {\qc -chai}, q.v.}.

6. Direct Use of the Database

Generating printed dictionaries is not the only use for the Carrier lexical databases.
Another use is as on-line dictionaries. They are easily searched, by means of the
search functions in Emacs and by means of other programs, such as AWK. In most

— 921 —

respects, such an on-line lexicon is faster and more convenient to use than a printed
version. I myself almost never use the printed dictionaries that I create — it is
usually more convenient for me to look up anything I do not know in the computer
files.

Another important use of the database is for linguistic research. An on-line lexi-
con can be searched in many different ways, for various combinations of information.
I frequently use the regular-expression matching facilities of Emacs and of AWK to
look for examples of various types.

For example, here is the EMACS Lisp code that creates a function that searches
the database for Carrier words good for inclusion in critical regions of sentences
elicited for the instrumental study of tone and intonation. It defines a function that
uses the existing incremental regular expression search facility to find records whose
headword contains only sonorants and voiced stops, sounds that do not significantly
perturb the fundamental frequency contour.

(31) EMACS Lisp Code Defining a Search Function

01 (defun find-goodf0 ()

02 "Find the next word good for FO."

03 (interactive)

04 (re-search-forward goodfO-regexp)

05)

06 (defconst goodfO-regexp "UP:[aiueomnylbdg]+$"

07 "Regular expression for recognizing words good for FO")

7. How and Why it Got to be That Way

This database system came about for a number of reasons. It origiinally ran on what
by current standards were very slow machines, under DOS. I had no funding with
which to buy specialized software or to hire other people to do part of the work
or provide technical support. The better, faster machines to which I had access,
though initially not at home or in the field, ran UNIX, so compatibility with UNIX
systems was desirable. Since I was thoroughly familiar with awk, make, and other
UNIX utilities and had extensive programming experience, and versions of these
were available for DOS at little or no cost, it made sense to use them.

A second factor was the limitations of available software. Most databases were
not designed for linguistic work and were not very flexible. They often required
fields to be of fixed length, could not generate output in appropriate formats, and
lacked the ability to sort in sufficiently sophisticated ways. I wrote msort because
there was no truly comparable program. The standard UNIX sorting utility lacks
many of the capabilities of msort, as do most if not all other stand-alone sorting
programs of which I am aware. Sorting of comparable sophistication was and is
available only within some databases, and even then, to my knowledge not all of
msort’s capabilities are available.

At the time, the only turnkey lexical database system of which I was aware was
the Summer Institute of Linguistics’ Shoebox program. Shoebox is in some ways

— 929 —

not unlike my own system but provides a more structured interface and a higher
degree of integrity checking. However, Shoebox did not have the sorting capability
I needed and could not easily be made to generate output in the format I desired.

The remaining approach was to use Robert Hsu’s Lexware system, a collection
of programs together with a file format that has been used to produce quite a few
dictionaries. Hsu has made great contributions both to the production of individual
dictionaries and to thinking about the automated production of dictionaries,!? but
his system was not quite what I wanted. For one thing, it is not a turnkey system,
but requires the user to rely on Hsu to adapt his programs to their needs. Using
the UNIX utilities I could just as easily have complete control and flexibility.

Yet another factor was that I did not set out, at the outset, to generate dictio-
naries. I initially created the database as a way of recording data I had collected
and being able to search it more efficiently than I could by reading through my
handwritten notes. Beyond this I had no specific plans for the database.

Finally, at the outset I did not know very much about the language, and therefore
did not know exactly what sorts of information would need to be separated and what
structure the database ought to have. It was important to avoid committments to
details of database structure that I might later regret.

8. Discussion

All in all, this system has served my needs well. It cost nothing, was not difficult
to set up, and has proved to be easy to modify and extend. The work necessary to
create it may have been greater than it would have been with an existing database,
but that is not clear, since few databases were well adapted to the same purposes.
Now that the system is set up, though, this disadvantage is not so great. I have found
it to be generally quite easy to modify and extend the existing system. Numerous
changes have been made in the format of printed dictionaries without difficulty and
various indices and new displays of information added. Adapting this dictionary
system to Flathead and Kootenai was a simple matter. Similarly, adapting the
software that generates TEX to generate HTML instead was quite simple. Once the
framework is in place, many changes are easy to make.!!

A more significant disadvantage is that it does not provide the same degree of
integrity control as do most standard databases. That is, it is relatively easy for
a record to become ill-formed or for records to be deleted accidentally. As I am a
skilled user of the system, the integrity checks and backups provided are probably
sufficient.

10 Hsu (1994) is a valuable discussion derived from his extensive experience in this area.

1 AWK has some limitations as a programming language. Were I to set up such a system again
from scratch, I might choose a different programming language. Many people now use PERL
(Wall & Randal 1991) for similar purposes. I have considered this, but to my taste PERL is
not cleanly structured and suffers from kitchen sinkism. Should I decide to use a language
other than AWK, it will probably be Python (Lutz 1996).

,23,

For a single expert user such as myself, probably the greatest limitation at
present is the need to create and maintain relations, such as that between records
for forms and example sentences, manually.

Generally speaking, this system is quite adequate for my own use and for use
by similarly skilled users working one at a time. The system is not well adapted
to use by more than one person or by inexpert users. Inexpert users would benefit
from a system that provides more elaborate integrity checks, with an interface that
carefully controlls the ways in which they can modify the database. A forms-based
interface would also make it easier for inexpert users to enter information. The
system is not well adapted to use by multiple users because it does not provide file
or record locking, different levels of access by different users, or automatic recording
of what modifications are made by whom.

— 24 —

References

Aho, Alfred V., Kernighan, Brian W., and Peter J. Weinberger (1988) The AWK
Programming Language. Reading, Massachusetts: Addison-Wesley.

Amith, Jonathan (2002a) Diccionario del idioma Nahuatl de Oapan y Ameyaltepec.
Philadelphia: the author.

Amith, Jonathan (2002b) Dictionary of Nahuatl of Opan and Ameyaltepec. Philadel-
phia: the author.

Feldman, S. I. (1986) “Make — A Program for Maintaining Computer Programs,”
Bell Laboratories Technical Report.

Hsu, Robert (1994) Methods of Language Data Processing. ms. University of Hawaii.
Knuth, Donald E. (1984) The TgXbook. Reading, Massachusetts: Addison-Wesley.

Levin, Beth (1993) English Verb Classes and Alternations: A Preliminary Investi-
gation. Chicago: The University of Chicago Press.

Lutz, Mark (1996) Programming Python. Cambridge: O’Reilly and Associates.

Nathan, David and Peter Austin (1992) “Finderlists, Computer-Generated, for
Bilingual Dictionaries,” International Journal of Lexicography 5.1.

Poser, William J. (2000) MSORT Reference Manual. The current version may be
downloaded from http://www.ling.upenn.edu/ wjposer/.

Stallman, Richard M. (1984). “EMACS: The Extensible, Customizable, Self-Documenting

Display Editor,” Interactive Programming Environments. edited by D. R. Barstow,
H. E. Shrobe, & E. Sandwell, (New York: McGraw-Hill), pp.300-325.

Thomason, Sarah G. (1994) A Dictionary of Montana Salish. Ms., University of
Pittsburgh and Confederated Salish/Kootenay Tribes.

Wall, Larry and Randal L. Schwartz (1991) Programming perl. Cambridge: O’Reilly
and Associates.

